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A B S T R A C T   

In this paper, considering critical phenomena and their phase transitions within the frame of the set of prime 
numbers, is attempted. Thus, the novel, theoretical and purely mathematical Model of Criticality based on Prime 
Numbers is introduced. This approach allows for the emergence of a parallelism between the physical concept of 
criticality and the corresponding concept in prime number theory. Based on this parallelism an application of the 
proposed model in determining the known magic numbers of Nuclear Physics is presented. This application 
introduces a physical meaning to the exceptional in properties set of the prime numbers and the corresponding 
prime number theory. Finally, going beyond the proposed model and its application, we suggest investigating 
other prime numbers as doubly magic numbers or candidate magic numbers for further experimental research.   

1. Introduction 

Stability and instability within the frame of criticality, as well as the 
phenomena of phase transitions and the emergence of critical point are 
concepts widely used in describing the world around us, including not 
only nature but also social and economic systems, to mention a few. 
These concepts are also found in pure mathematics and sciences, such as 
dynamical systems of differential equations [1–3], chaos theory [4], 
nonlinear systems [5,6] and in general in the modern theory of 
complexity. Parallelisms are often made between the mathematical 
characteristics of these concepts and the physical reality of critical 
phenomena and phase transitions [4,7]. 

In this work, we introduce the concepts of criticality and phase 
transitions in an exceptional and purely mathematical framework, that 
of the theory of prime numbers [8]. Motivated by our will to investigate 
and explore the existence of criticality in the set of prime numbers, we 
further move on to another goal, exploring possible applications of this 
concept in real physical systems. As a result, we introduce the theoret
ical and purely mathematical Model of Criticality based on Prime 
Numbers (MCPN). Additionally, we apply this model on the magic 
numbers of Nuclear Physics. 

The magic numbers of Nuclear Physics are the numbers of protons 
and/or neutrons that build the surprisingly stable nuclei. The property 
of stability is an especially important feature, if one considers that 
instability rather than stability characterizes isotopes. The phenomenon 
of this particular stability of magic numbers has been explained in Nu
clear Physics through the model of shells [9,10]. In this paper, we 
attempt an interpretation of the existence of magic numbers by utilizing 
the introduced hereby Model of Criticality based on Prime Numbers 
(MCPN). This would allow us to describe critical phenomena in nature 
in terms of prime number theory. Also, this would reveal, unknown of 
correspondences between prime number properties and a very impor
tant field, appearing everywhere in nature such as the critical 
phenomena. 

The proposed parallelism between the MCPN and the magic numbers 
of nuclear physics motivates us to further search for other magic 
numbers, beyond the ones known so far or to extend to the notion of the 
doubly magic numbers. Finally, it should be mentioned that the appli
cation of the MCPN in the case of magic numbers, suggests a success for 
the theory of prime numbers, further gaining a physical content. One 
could say that it is a “hidden” description of the critical phenomena in 
nature. 
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2. Gaps in the counting function π (x) of prime numbers 

In the prime number theory, one may define the counting function 
(x), which counts the number of primes up to x. For this function, the 
definition is simply: 

π(x) =
∑

pϵP
u(x − p), (1)  

where p is the set of primes numbers and u(x) the Heaviside function, 

which is defined in the following relation: u(x) =

{
1 for x ≥ 0
0 for x < 0 . 

Imposing a gap g = 2, 3,4, 5…, g ∈ Ζ on the set of prime numbers, one 
defines the following counting function: 

πg(x) =
∑

pϵP
u(x − (p − g) ); g = 2, 3, 4… ∈ Ζ. (2) 

We now create an arrangement of levels, where the number of each 
level is the position of the first number p in the series of prime numbers, 
until p becomes equal to x. For example, for the first 10 prime numbers 
we have: 1(2), 2(3), 3(5), 4(7), 5(11), 6(13), 7(17), 8(19), 9(23), 10(29), 
where 1, 2, 3, …, 10 stand for the position of prime number in the prime 
number series and inside the parenthesis appears the corresponding 
prime number value. From Eq. (2) one can find the counting number 
πg(x). As an example, we consider a gap g = 7, then we find for every 
level the corresponding counting number: 0, 0, 0, 0, 2, 3, 4, 5, 6, 8. We 
name these numbers, occupation numbers on their corresponding levels 
1, 2, …, 10. This way, one may treat the prime numbers as if they were 
particles placed on levels; something that reminds us of physics, espe
cially atomic and nuclear physics. 

In the framework “logic of levels”, one may also consider a known 
phenomenon which can be described in levels, that of the fine structure 
phenomenon, where a level is divided in two levels. A procedure like this 
may be described as: 

π(− a)
g =

∑

pϵP
u(x − (p − (g − a) ) ) (3)  

and 

π(+a)
g =

∑

pϵP
u(x − (p − (g+ a) ) ) (4)  

where a ∈ (0,1). 
Then the count functions π(− a)

g , π(+a)
g , provided by Eqs. (3) and (4), 

are the corresponding to occupation numbers of the prime numbers p ≤

x corresponding to these levels. In Fig. 1a an example for the first 15 
prime numbers (1, 2, 3, …,15) and (a) a gap g = 12 and (b) a gap g = 7, 
is presented, taking into account that a ∈ (0, 1). 

Inspired by existing concepts coming from physics, we expand our 
syllogism considering the creation of dipoles (pairs) between “particles” 
that belong to the above defined populations π(− a)

g , π(+a)
g , for each level 

for the dipole ( − a,+a). Such a mathematical formulation could 
represent a a two-way spin physical system with a down (− 1) and up 
(+1) direction. It is apparent that there are gaps for which we get images 
such as that in Fig. 1b, i.e., for each level it holds that: 

π(− a)
g = π(+a)

g (5) 

To distinguish the specific values of the gaps that fulfill Eq. (5), we 
call them “resonances”, a word borrowed from physics. It must be 
reminded that the classical phenomenon of resonance is obtained when 
the frequency of the stimulator becomes equal to the eigen-frequency. 

Another concept to use, coming from the field of physics, is the 
concept of shells. These are structures larger than levels; for example, in 
nuclear physics energy shells contain energy levels. In this case the 
occupation number in the proton-neutron shells is calculated cumula
tively, by summing the occupation numbers of the levels contained. 

Correspondingly, one may define shells in the case of prime numbers as 
those where the cumulative occupation numbers in each level are 
calculated by adding to the occupation number of the level and the 
corresponding occupation numbers of the previous levels. In the rest, we 
will refer to the cumulative case in prime numbers. 

To quantify the difference between the gaps that produce the reso
nances of Eq. (5), as well as all the other gaps that do not produce res
onances, we define the following quantity: 

Q =

(
N(0)

N

)

• 100%, (6)  

where N is the population of the considered prime numbers, or N is the 
number of the pairs ( − a,+a), and N(0) is the number of pairs where the 
Eq. (5) is valid. In Fig. 2, a graph showing the escalation of quantity Q vs. 
the value of 60 gaps, for the first N = 168 prime numbers that cover the 
first thousand of the integers, appears. 

Fig. 1. Red points refer to π(− a)
g and green points to π(+a)

g . (a) The occupation 
numbers corresponding to the level for g = 12. The vertical line shows these 
occupation numbers in level equal to 11 (i.e in 11-th prime number in series). 
(b) The occupation numbers correspond to the levels for g = 7. Now the 
occupation numbers become equal for every level of the fine structure. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 2. (a) The quantity Q vs. the gap (g) = 2,…,60, considering the first 168 
prime numbers. (b) Zoom in a spike. Point A (g = 13, Q = 100%), point B (12, 
3.8%) and C (14, 3.8%). 
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3. Parallelism between “criticality” in prime numbers and phase 
transitions in physics 

Critical phenomena and phase transitions appear to be universal 
framework embracing phenomena in nature and furthermore. A short 
and very good presentation of the theory of criticality can be found in 
[11]. In brief, the critical point or critical state for dynamical systems is 
the point where two phases are separated, and this is the key concept. 
These two phases are the phase of high symmetry and the phase of 
broken symmetry. A critical point appears just before the transition from 
one phase to another and the procedure is controlled by changing the 
value of a parameter of the system (control parameter). As an example, 
we mention ferromagnetic materials. In these materials the evolution of 
the mean magnetization is monitored as the temperature is changed, 
thus, playing the role of the control parameter. The mean magnetization 
is characterized as an order parameter and has the property of being zero 
(without external magnetic field) in the symmetric phase, while it has a 
non-zero value at critical point in the phase of the broken symmetry. In 
numerical models such as the Ising model, the magnetic momentum 
(spin) of the material is allowed to have only two possible orientations, 
the upward direction (+1) and the downward direction (− 1). Thus, the 
order parameter, i.e., the average magnetization, is defined as the 
component of these two directions. At the critical point the number of 
positive spins is exactly equal to the number of negative spins, therefore, 
the mean magnetization is zero. 

Considering the described in the previous section mathematical 
model, one may correspond to the possible orientations the quantities 
π(− a)

g and π(+a)
g in the occupation numbers of the prime numbers. Also, 

the in the position of the critical point, one may correspond the reso
nance in the prime numbers, where π(− a)

g = π(+a)
g . Additionally, the order 

parameter ϕ may be corresponded to the quantity ϕ = 100 − Q, where 
in the critical point (resonances) becomes 0, while the control parameter 
would be recognized the gap g. 

In a second order phase transition the phase diagram, i.e., a graph 
illustrating the dependence of order parameter on the control param
eter, has the form appearing in Fig. 3a [11,12]. Comparing the two 
graphs of Fig. 3 we can see a correspondence between the critical point 
of phase transition and the resonance gap of prime numbers. This cor
respondence is consistent to the term “resonance” that we opted to use, 

considering a recent work about the critical point of a phase transition is 
a state of resonance [13]. 

The basic phase transitions which take place in nature are the first 
and second order phase transitions. The transition from the symmetrical 
phase to the phase of the broken symmetry is accomplished according to 
the description of the mean field theory based on the Landau free energy 
[11]. According to the spontaneous symmetry breaking (SSB) scenario 
in the case of the second order phase transition, the critical point 
separating a stable point in the symmetric phase is converted into an 
unstable point in the phase of the broken symmetry, further granting its 
position to two stable states. 

In Fig. 4 a typical SSB phenomenon is illustrated [11,14]. As shown 
in this, the stable points are degenerate, since they have the same free 
energy. This means the two stable points are perfectly equivalent and 
that the system will eventually settle in one of these two. Attempting to 
perform a correspondence between this diagram of the typical second 
order phase transition (Fig. 4) and the one appearing in Fig. 2b of the 
prime numbers we can recognize in Fig. 2a the point A as an “unstable 
point” at resonance gap position g = 13 and therefore the points C, B as 
“stable points” at positions 13 ± 1 respectively. In addition, we see that 
also the points B, C are degenerate because their coordinates have the 
same value for the quantity Q. 

The other type of phase transition that occurs in nature is the first 
order phase transition where the free energy diagram with the order 
parameter shows a triple degeneration as shown in Fig. 5. 

In Fig. 2a for the case of the prime numbers twin resonances also 
appear and they have the form of Fig. 6, appearing additionally to the 
resonances for the case of Fig. 2b. 

According to the presented syllogism in this section, it is apparent 
that the introduction of the concept of critical phenomena into prime 
numbers is performed at the level of correspondences, similarities, and 
parallelisms; parallel descriptions between quantities coming from 
mathematical theory, such as the prime numbers, and physical reality 
such as critical phenomena. 

Summarizing all the above thinking pathway, these correspondences 
are presented in a systematic and illustrative way in Table 1. In this table 
all the typical quantities appearing in phase transitions are corre
sponded one to one to quantities of the set of prime numbers. As seen in 
this table the elements describing phase transitions corresponded to 
properties prime numbers are magnetic moments (spins), order 
parameter, control parameter, symmetries, as well as other character
istics of phase transitions like critical point and stable vacua. Addi
tionally, the phase transitions themselves correspond to prime numbers’ 

Fig. 3. (a) The phase diagram for a thermal system undergoing a second order 
phase transition. In this diagram magnetization M is the order parameter, while 
temperature T is the control parameter. The external magnetic field is zero. The 
arrow shows the position of critical point where M = 0. (b) The quantity ϕ, as 
an order parameter and the gaps g as the control parameter in case of the prime 
number representation. The arrow shows the position of resonance gap where 
ϕ = 0. The points are the points between the successive resonances according 
to Fig. 2a. 

Fig. 4. The Landau free energy U(ϕ) vs. the order parameter ϕ in a typical SSB 
phenomenon during a second order phase transition. The critical point A is an 
unstable point, which gives its position in the broken symmetry phase to the 
two stable points B and C. 
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resonances (being consistent to [13], where phase transitions are, in 
fact, resonance phenomena). This way a physical meaning for prime 
numbers emerges. 

Beginning from physics and the concepts within the frame regarding 
critical phenomena, we arrived at the corresponding concepts in the set 
of prime numbers. Conversely, one could use now these concepts in the 
field of prime numbers to identify physical systems that are in critical 
state. Then we treat the concepts in prime numbers like a model, for 
which we coin the name “Model Criticality based on Prime Numbers” 
(MCPN). 

A confirmation of the above could be made if characteristic numbers 
referring to stable physical systems are identified with the values of the 
“stable” gaps for the counting functions of prime numbers, via the 
MCPN. Such characteristic physical numbers are the populations of 
protons or neutrons in those nuclei which exhibit exceptional stability. 
These numbers are the magic numbers of nuclear physics. 

4. Application of the MCPN on magic numbers of nuclear 
physics 

The magic numbers of nuclear physics are the numbers of protons (Z)
or the number of neutrons (N) of the nuclei that have the property of 
being extremely stable. The seven most widely recognized magic 
numbers are 2, 8, 20, 28, 50, 82, and 126 [15,16]. Further, predicted 
magic numbers are 114, 122, 124, and 164 for protons [17–20]. 
Additional calculations predict, along with 184, 228 also 308 for neu
trons [20,21]. In September 2019 an international research team stated 
that the number 34 for neutrons is a magic number [22]. Goeppert- 
Mayer and other physicists went on to explain this phenomenon based 
on the nuclear shell model, in which protons and neutrons fill a nucleus 
in energy shells, or orbital, akin to the layers of an onion. 

Nuclei which have neutron numbers and proton numbers each equal 
to one of the magic numbers are called “doubly magic” and are espe
cially stable against decay [23]. Such a nucleus is the isotope of Nickel 
with A = N + Z = 50 + 28 = 78 [24]. 

The fact that in recent years there has been significant research on 
the issue of magic numbers, as proved by mentioned works, means that 
the issue of magic numbers is not closed. On the contrary, intense 
experimental efforts still go on to locate other magic numbers, since the 
issue of finding new stable nuclei that are unsusceptible to nuclear decay 
will always be a challenge in nuclear physics. 

It is known from the shells model of nucleus, that magic numbers 
correspond to the greatest gaps in energy between shells, providing 
extra stability to nucleus, which is completely filled in, with those shells 
[25,26]. 

Getting back to the proposed in this work model, the procedure 
provided by the MCPN as this is applied in the case of calculating the 
magic numbers of nuclear physics, is presented in the form of steps:  

• We locate the positions gresonance of the resonance gaps.  

a) Then we take as stable positions only those gaps provided by the 
theory of criticality, i.e. the breaking of the symmetry. These are the 
ones that have a gap value of gresonance ± 1. From this procedure we 
exclude the magic number 2, because it has an odd neighbor the 
number 1, which, however, does not correspond to a gap because 
g > 2. In Table 2 we present the results of the application of the 
MCPN for the classic magic numbers 8, 20, 28, 50, 82, 126 and the 
new ones 34, 114, 122, 124, 164, 184, 228, 308. In column 3 the 
numbers of the stable gaps of the prime numbers that are identical 
with the known magic numbers (for example 8, 20, 50, 82, …etc.), 
are presented.  

• It appears that the magic number covers the one of the two stable 
degenerate gap positions for single resonances or up to two from 
three positions, for twin resonances. 

Fig. 5. The Landau free energy U(ϕ) vs. the order parameter ϕ in the case of 
first order phase transition. A triple degeneration for the order parameter 
is shown. 

Fig. 6. A segment of the graph appearing in Fig. 2a, which resembles a twin 
resonance. For g = 23,25 unstable critical points appear. These points corre
spond to the unstable critical points A1 and A2 in Fig. 5. The stable points C, D, 
E at the positions 22, 24, 26, correspond to the same value of Q and therefore 
are degenerate. 

Table 1 
Correspondences between thermal critical phenomena (and phase transitions) 
and Counting Functions with gap in prime number theory.  

Thermal critical phenomena and phase 
transitions 

Counting function with gap in prime 
number theory 

Ising total magnetic moments, Spin(− ), 
Spin(+) 

Occupation number π(− a)
g , π(+a)

g 

Critical point: Spin(− ) = Spin(+) “critical point”, π(− a)
g = π(+a)

g 

Critical point at T = Tc “critical point” at g = gresonance 

Control parameter: Temperature Control parameter: gap 
Order parameter: Magnetization M Order parameter: Φ = 100 − Q 
Stable potential vacua are in symmetrical 

positions of critical point 
“Stable” gaps in symmetrical 
positions of gresonance 

Degenerated stable vacua Degenerated “stable” gaps 
Second order phase transition Single resonances 
First order phase transition Twin resonances  
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• The gap 28 is very close to the stable gap 26, which belongs as a 
C-point to the resonance gap 25. So according to our model it is not a 
magic number. Indeed, in the first series of magic numbers number 
28 was not included [27]. In [28] there is a discussion that less- 
pronounced effects are also observed for 28, 14, 40. These 
numbers are known as semi-magic numbers [29], due to the special 
stability of their nucleus, thus they are less marked than a magic 
number. Therefore, our model can successfully discern this slight 
variation in the stability of the magic number 28. 

In the following we highlight the main similarities between the 
MCPN and magic numbers.  

• As we see the concepts of energy gap and nucleus stability are the 
most important in nuclear magic numbers theory just like gaps and 
stability in counting function of prime number theory.  

• In the model of the shells of the nuclei, the occupation numbers of 
proton and neutrons are filled according to the cumulative applica
tion of the Pauli exclusion principle on the sub-shells. In prime 
numbers, the creation of occupation numbers at the levels included 
to a gap is also performed through Eqs. (3) and (4) with a cumulative 
way too.  

• The “coincidence” that the magic numbers are the same as the gap 
numbers in Table 2, exists because we have limited the possible 
positions of stability only to those predicted by the theory of critical 
phenomena and phase transitions in our model MCPN. This impor
tant conclusion leads us to think that the phenomenon of magic 
numbers obeys the mechanisms of first and second order phase 
transitions. The order of the phase transition could be predicted by 
checking whether the magic number is a neighbor to simple or twin 
resonances. Thus, in our effort to find extended connections between 
prime numbers and magic numbers, we realized that the critical 
phenomena and phase transition could be such a field.  

• Phase transition has also been studied in the field of magic numbers, 
and both cases of first and second order as well as criticality have 
been studied in nuclear phenomena [30–33], in particular, on issues 
concerning the shape of nuclei and their stability. 

In [34] the curve of the first order phase transition (Fig. 5) corre
sponds to the critical point of the spherical-to-deformed transition, in 
the framework of the study of the transition of the shape of the nucleus 
with magic numbers through the phase transition. This field is an open 
and challenging topic for further investigation in the framework of novel 
model introduced hereby (MCPN). 

5. Discussion and concluding remarks 

Beginning from the fact that the number of magic numbers is rela
tively small and looking at Fig. 2a, it is apparent that there are reso
nances that do not correspond to the magic numbers found till now. 

Initially, we must observe (Fig. 2a) that as the gap in the prime numbers 
increases, the level of degenerate stable gaps increases too. This means 
that the stable vacuum in Landau free energy becomes shallower or 
otherwise the stability decreases. That is, magic numbers are no longer 
so “magic”, confirming a well-known result in nuclear physics that the 
heavy nuclei show less stability and from some value of magic numbers 
and on, we can no longer talk about them. 

Of course, the initial question of the correspondence between the 
population of known magic numbers and the population of resonances 
remains. It is possible to consider at least three views. One view is that 
nature does not invest on other resonances in magic numbers but 
perhaps on other natural phenomena that refer to critical state. The 
second view is that these extra magic numbers, corresponding to the 
excess of resonances, have not been found experimentally. Third view is 
to correspond the excess of resonances to magic numbers using the 
concept of the doubly magic numbers. 

We will follow what we said before about the decrease of stability as 
the gap increases and we will go that way until gap 94. Then appears an 
excess of single resonances for 13, 37, 43, 67, 79 and the twin resonances 
23–25, 53–55, 61–63, 73–75, 91–93. Thus, the degenerate positions for 
the single resonances according to MCPN are (12, 14), (36, 38), (42, 44), 
(66, 68), (78, 80). Then the corresponding candidate magic number is 
one of the two numbers inside the parentheses. For the twin resonances 
the most probable positions are the positions D (Fig. 6), which are stable 
states of two resonances simultaneously. Then the emerging candidate 
magic numbers are 24, 54, 62, 74, 92. 

Using the concept of doubly magic numbers, most of the candidate 
magic numbers are covered by various combinations of existing magic 
numbers and candidates. We present various examples based on doubly 
magic number:  

a) Number 78 is already a doubly magic number (section 4).  
b) The existing magic number 20 can be considered as doubly magic 

number by the already known 8 and the candidate 12 (20 = 8 + 12).  
c) The candidate magic number 42 with the existing magic number 50 

gives the candidate 92 as a doubly magic number.  
d) The candidate magic number 24 with the existing magic number 50 

gives the candidate 74 as a doubly magic number.  
e) The candidate 54 and 38 gives the candidate 92 as a doubly magic 

and so on. 

Concluding, we should mention that in this paper following a 
parallelism between the concept of criticality in nature and nonlinear 
mathematical theories, we transfer the concept of criticality to the set of 
prime numbers through the counting function. We further developed 
and introduced the Model of Criticality in Prime Numbers (MCPN), 
which we applied to calculate the magic numbers in nuclear physics, 
based on two common basic concepts of our model and magic numbers, 
namely stability and gaps. Finally, we concluded that the known magic 
numbers are determined by MCPN. In addition, we suggested for further 
research investigating the possible existence of other magic numbers, 
bearing mainly the property of doubly magic numbers. 
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